2021 WCA Annual Conference

The Latest on Multi-Modal Transportation

Presented by Gary R. Goyke

Tuesday, September 28, 2021 8:00 a.m. – 9:00 a.m. La Crosse Center – South Hall B4/Blue (Lower Level) La Crosse, Wisconsin

Moderated by Monica Kruse County Board Chair, La Crosse County

> Gary R. Goyke Goyke & Associates

130 Lakewood Blvd., Madison, WI 53704 <u>gary.goyke@gmail.com</u> (email) 608-249-8118 · 608-219-5237 (cell) <u>garygoyke.com</u> (website) Our discussion today summarizes some basic principles for sound multimodal programs and planning. I am honored to be included in this convention.

The Wisconsin Counties Association is already a leader in defining the principles and practices of multi-modal transportation. I am hopeful our meeting today will continue to move all of us forward in our state's commitment to an efficient and fair Wisconsin transportation network.

I want to acknowledge the excellent work and ideas of Todd Alexander Litman that form the basis for this breakout session.

Gary R. Goyke WCA Convention La Crosse, Wisconsin September 28, 2021

Two Boxes of Twelve Points for Discussion

- Highways
- Complete streets
- Eminent domain
- Transit cuts
- Transportation Committees
- Joint Finance Committee
- Robin Vos
- Tony Evers
- Pete Buttigieg
- Craig Thompson
- Joe Biden
- Democracy State budget

- Mississippi River
- La Crosse Transit Center
- Interstate highways
- Airport
- Passenger rail
- Shared rides
- Taxis
- TNCs
- Bikes
- Pedestrian access
- Medical rides
- Roads and highways

Multi-Modal Transportation Planning Victoria Transport Policy Institute

Introduction

To be efficient and fair a transportation system must serve diverse demands. For example, would be inefficient if inadequate sidewalks and paths force parents to chauffeur children to local destinations to which they would rather walk or bicycle, or if inadequate mobility options force urban commuters to drive although they would prefer to rideshare or use transit. Physically, economically and socially disadvantaged people in particular need diverse mobility options: walking and cycling for local travel, public transit for longer trips, and automobiles (ridesharing, chauffeuring and taxi travel) when necessary. As a result, to be efficient and fair transportation must be multimodal.

Before about 1940, walking, bicycling and public transit were recognized as important travel modes, but for most of the last century transport planning was automobile-oriented. As a result, most communities now have well developed road systems that allow motorists to drive to most destinations with relative convenience and safety; at worst they may be delayed by peak period congestion, and pay tolls and parking fees at some destinations. However, such planning ignored non-automobile travel demands, such as those in the following box.

Non-Automobile Travel Demands

- Youths 10-20 (10-30% of population).
- Seniors who do not or should not drive (5-15%).
- Adults unable to drive due to disability (3-5%).
- Lower income households burdened by vehicle expenses (15-30%).
- Law-abiding drinkers, and other impaired people (a small but important demand to serve).
- Community visitors who lack a vehicle or driver's license.
- People who want to walk or bike for enjoyment and health.
- Drivers who want to avoid chauffeuring burdens.
- Residents who want reduced congestion, accidents and pollution emissions.

Of course, not everybody uses all travel options, but most communities include people who need each one. For example, not everybody uses public transit or needs universal design features such as curbcuts and ramps, but most communities include some people who require them to travel independently, and most people will need them sometime in their lives. As a result, even people who don't currently use a particular mode may value having it in their community, similar to lifeboats on a ship that are seldom used but important to have available; called *option value*.

Travel demands, and therefore the value of more multimodal planning, can be evaluated from different perspectives. The narrowest only counts people who currently depend on a particular mode. However, this often reflects a self-fulfilling prophecy: underinvestment in these modes makes them difficult to use. A broader perspective also considers occasional users, and latent demand (potential walking, cycling and public transit trips that could be made if their conditions were improved), external impacts (benefits to other people when travellers can walk, bicycle and use public transit rather than drive) and strategic community objectives (reduced traffic and parking congestion, affordability, improved mobility for non-drivers, etc.). These tend to justify more multimodal planning. As a result, many people around the world increasingly recognize the diversity of travel demands and the importance of more multimodal planning.

This report examines these issues. It discusses various travel demands, and how multimodal transportation planning can effectively respond to those demands.

Multimodal Planning Concepts

Multi-modal planning refers to planning that considers various modes (walking, cycling, automobile, public transit, etc.) and connections among modes.

There are several specific types of transport planning which reflect various scales and objectives:

- *Traffic impact studies* evaluate traffic impacts and mitigation strategies for a particular development or project.
- Local transport planning develops municipal and neighborhood transport plans.
- *Regional transportation planning* develops plans for a metropolitan region.
- *State, provincial and national transportation planning* develops plans for a large jurisdiction, to be implemented by a transportation agency.
- Strategic transportation plans develop long-range plans, typically 20-40 years into the future.
- *Transportation improvement plans (TIPs)* or *action plans* identify specific projects and programs to be implemented within a few years.
- *Corridor transportation plans* identify projects and programs to be implemented on a specific corridor, such as along a particular highway, bridge or route.
- *Mode- or area-specific transport plans* identify ways to improve a particular mode (walking, cycling, public transit, etc.) or area (a campus, downtown, industrial park, etc.).

A transport planning process typically includes the following steps:

- Monitor existing conditions.
- Forecast future population and employment growth, and identify major growth corridors.
- Identify current and projected future transport problems and needs, and various projects and strategies to address those needs.
- Evaluate and prioritize potential improvement projects and strategies.
- Develop long-range plans and short-range programs identifying specific capital projects and operational strategies.
- Develop a financial plan for implementing the selected projects and strategies.

Conventional transportation evaluation tends to focus on certain impacts, as summarized in Table 1. Commonly-used transport economic evaluation models, such as *MicroBenCost*, were designed for highway project evaluation, assuming that total vehicle travel is unaffected and is unsuitable for evaluating projects that include alternative modes or demand management strategies.

napado conclución ana evenecidad				
Usually Considered	Often Overlooked			
	Generated traffic and induced travel impacts			
	Downstream congestion			
	Impacts on non-motorized travel (barrier effects)			
	Parking costs			
	Vehicle ownership and mileage-based depreciation costs.			
	Project construction traffic delays			
	Indirect environmental impacts			
	Strategic land use impacts (sprawl versus smart growth)			
Financial costs to governments	Transportation diversity and equity impacts			
Vehicle operating costs (fuel, tolls, tire wear)	Per-capita crash risk			
Travel time (reduced congestion)	Public fitness and health impacts			
Per-mile crash risk	Travelers' preferences for alternative modes (e.g., for walking			
Project construction environmental impacts	and cycling)			

Table 1 Impacts Considered and Overlooked

Conventional transportation planning tends to focus on a limited set of impacts. Other impacts tend to be overlooked because they are relatively difficult to quantify (e.g., equity, indirect environmental impacts), or simply out of tradition (e.g., parking costs, vehicle ownership costs, construction delays).

Conventional transportation planning strives to maximize traffic speeds, minimize congestion and reduce distance-based crash rates using a well-developed set of engineering, modeling and financing tools. Many jurisdictions codify these objectives in *concurrency requirements* and *traffic impact fees*, which require developers to finance roadway capacity expansion to offset any increase in local traffic. Alternatives to roadway expansion, such as *transportation demand management* and *multi-modal* transport planning, are newer and so have fewer analysis tools. As a result, conventional planning practices support *automobile dependency*, which refers to transport and land use patterns favoring automobile travel over alternative modes (in this case, *automobile* includes cars, vans, light trucks, SUVs and motorcycles).

In recent years transportation planning has expanded to include more emphasis on non-automobile modes and more consideration of factors such as environmental impacts and mobility for nondrivers. In recent decades many *highway agencies* have been renamed *transportation agencies*, and have added capacity related to environmental analysis, community involvement and nonmotorized planning. Some are applying more comprehensive and multi-modal evaluation (Litman 2012). Transport modeling techniques are improving to account for a wider range of options (such as alternative modes and pricing incentives) and impacts (such as pollution emissions and land use effects). In addition, an increasing portion of transport funds are flexible, meaning that they can be spent on a variety of types of programs and projects rather than just roadways.

Figure 2 Four-Step Traffic Model

www.mwcog.org/transportation/activities/models/4 step.asp

Most regions use *four-step models* to predict future transport conditions (see Figure 2). The region is divided into numerous transportation analysis zones (TAZs) each containing a few hundred to a few thousand residents. Trip generation (the number and types of trips originating from each TAZ) is predicted based on generic values adjusted based on local travel surveys that count zone-to-zone peakperiod trips. These trips are assigned destinations, modes and routes based on their generalized costs (combined time and financial costs), with more trips assigned to relatively cheaper routes and modes, taking into account factors such as travel speeds, congestion delays and parking costs. Transport models are being improved in various ways to better predict future travel activity, including the effects of various transport and land use management strategies.

This predicts future peak-period traffic volumes on each route, and identifies where volumes will exceed capacity (based on the volume/capacity ratio or V/C) of specific roadway links and intersections. The intensity of congestion on major roadways is evaluated using level-of-service (LOS) ratings, a grade from A (best) to F (worst).

Table 2 summarizes highway LOS ratings. Similar ratings are defined for arterial streets and intersections. Roadway levelof-service is widely used to identify traffic problems and evaluate potential roadway improvements. Figure 3 illustrates a typical model output: a map showing LOS ratings of major regional roadways.

LOS	Description	Speed (mph)	Flow (veh./hour/lane)	Density (veh./mile)
	Traffic flows at or above posted speed limit. Motorists			
А	have complete mobility between lanes.	Over 60	Under 700	Under 12
	Slightly congested, with some impingement of			
	maneuverability. Two motorists might be forced to			
В	drive side by side, limiting lane changes.	57-60	700-1,100	12-20
	Ability to pass or change lanes is not assured. Most			
	experienced drivers are comfortable and posted speed			
	is maintained but roads are close to capacity. This is			
С	the target LOS for most urban highways.	54-57	1,100-1,550	20-30
	Typical of an urban highway during commuting hours.			
	Speeds are somewhat reduced, motorists are hemmed			
D	in by other cars and trucks.	46-54	1,550-1,850	30-42
	Flow becomes irregular and speed varies rapidly, but			
	rarely reaches the posted limit. On highways this is			
E	consistent with a road over its designed capacity.	30-46	1,850-2,000	42-67
	Flow is forced, with frequent drops in speed to nearly			67-
F	zero mph. Travel time is unpredictable.	Under 30	Unstable	Maximum

Table 2 Highway Level-Of-Service (LOS) Ratings (Wikipedia)

This table summarizes highway Level of Service (LOS) rating, an indicator of congestion intensity.

Under optimal conditions a grade separated highway can carry up to 2,200 vehicles per hour (VPH) per lane, and an arterial with intersections about half that. Table 3 indicates commonly used traffic measurement units. These are generally measured during *peak hours*. Speed is generally based on the *85th percentile* (the speed below which 85% of vehicles travel). Traffic volumes are also sometimes measured as *Annual Average Daily Traffic* (AADT).

Table 3Basic Traffic Units

Parameter	Typical Units	Reciprocal	Typical Units
Flow	Vehicles per hour (Veh/h)	Headway	Seconds per vehicle (s/veh)
Speed	Kilometers or miles per hour (Km/h)	Travel time	Seconds per km or mi (s/km)
Density	Vehicles per lane-km or mi (veh/lane-km)	Spacing	Feet or meters per vehicle (m/veh)

This table summarizes units commonly used to measure vehicle traffic.

Terms and Concepts

- Traffic congestion can be *recurrent* (occurs daily, weekly or annually, making it easier to manage) or *non-recurrent* (typically due to accidents, special events or road closures).
- *Design vehicle* refers to the largest vehicle a roadway is designed to accommodate. *Passenger Car Equivalents* (PCE) indicate a larger vehicle's traffic imapcts compared with a typical car.
- A *queue* is a line of waiting vehicles (for example, at an intersection). A *platoon* is group of vehicles moving together (such as after traffic signals turn green).
- *Capacity* refers to the number of people or vehicles that could be accommodated. *Load factor* refers to the portion of capacity that is actually used. For example, a load factor of 0.85 indicates that 85% of the maximum capacity is actually occupied.

A typical transport planning process defines the minimum level-of-service considered acceptable (typically LOS C or D). Roads that exceed this are considered to *fail* and so deserve expansion or other interventions. This approach is criticized on these grounds:

- It focuses primarily on motor vehicle travel conditions. It assumes that transportation generally consists of automobile travel, often giving little consideration to travel conditions experienced by other modes. As a result, it tends to result in automobile dependency, reducing modal diversity.
- It defines transportation problems primarily as traffic congestion, ignoring other types of problems such as inadequate mobility for non-drivers, the cost burden of vehicle ownership to consumers and parking costs to businesses, accident risk, and undesirable social and environmental impacts.
- It ignores the tendency of traffic congestion to maintain equilibrium (as congestion increases, traffic demand on a corridor stops growing), and the impacts of *generated traffic* (additional peak-period vehicle travel that results from expanded congested roadways) and *induced travel* (total increases in vehicle travel that result from expanded congested roadways). As a result, it exaggerates the degree of future traffic congestion problems, the congestion reduction benefits of expanding roads, and the increased external costs that can result from expanding congested roadways.
- It can create a self-fulfilling prophecy by directing resources primarily toward roadway expansion at the expense of other modes (widening roads and increasing traffic speeds and volumes tends to degrade walking and cycling conditions, and often leaves little money or road space for improving other modes).
- Short trips (within TAZs), travel by children, off-peak travel and recreational travel are often ignored or undercounted in travel surveys and other statistics, resulting in walking and cycling being undervalued in planning.

In recent years transportation planning has become more multi-modal and comprehensive, considering a wider range of options and impacts. Transport planners have started to apply Level-of-Service ratings to walking, cycling and public transit, and to consider demand management strategies as alternatives to roadway capacity expansion.

Green Transportation Hierarchy

- 1. Pedestrians
- 2. Bicycles
- 3. Public transportation
- 4. Service and freight vehicles
- 5. Taxis
- 6. Multiple occupant vehicles (carpools)
- 7. Single occupant vehicles

The Green Transportation Hierarchy favors more affordable and efficient (in terms of space, energy and other costs) modes.

Some urban areas have established a transportation hierarchy which states that more resource efficient modes will be given priority over single occupant automobile travel, particularly on congested urban corridors. This provides a basis for shifting emphasis in transport planning, road space allocation, funding and pricing to favor more efficient modes.

Multimodal Transportation Planning

Multmodal planning refers to transportation and land use planning that considers diverse transportation options, typically including walking, cycling, public transit and automobile, and accounts for land use factors that affect accessibility. A growing body of resources are being developed for multimodal planning (Williams, Claridge and Carroll 2016).

Multimodal transportation accounts for the differing capabilities of different modes, including their availability, speed, density, costs, limitations, and therefore their most appropriate uses (Table 4).

Table 4	Mode P	rofiles							
Mode	Availability	Speed	Density	Loads	Costs	Pote	ential U	lsers	Limitations
	Times and locations served	typical speeds	space needed	carrying capacity	user costs	Non- Drivers	Poor	Handi- capped	
									Requires physical ability.
									Limited distance and
	Wide (nearly								carrying capacity. May be
Walking	universal)	2-5 mph	High	Small	Low	Yes	Yes	Varies	difficult or unsafe to use.
	Limited								
	(requires								Requires suitable sidewalk
	suitable								or path. Limited distance
Wheelchair	facilities)	2-5 mph	Medium	Small	Med.	Yes	Yes	Yes	and carrying capacity.
	Wide (feasible								Requires bicycle and ability.
	on most roads	5-15		Small to					Limited distance and
Bicycle	and paths)	mph	Medium	medium	Med.	Yes	Yes	Varies	carrying capacity.
	Moderate (in								
	most urban	20-60					Limite		High costs and limited
Taxi	areas)	mph	Low	Medium	High	Yes	d	Yes	availability.
Fixed Route	Limited (major	20-40							Limited availability.
Transit	urban areas)	mph	High	Small	Med.	Yes	Yes	Yes	Sometimes difficult to use.
		10-30							High cost and limited
Paratransit	Limited	mph	Medium	Small	High	Yes	Yes	Yes	service.
	Wide (nearly	20-60		Medium			Linsita		Requires driving ability and
Auto driver	universal)	mph	Low	to large	High	No	d	Varies	automobile. Costly.
	,			U	0		-		Requires cooperative
Ridesharing	Limited (only								motorist. Chauffeuring
(auto	suited for some	20-60							(special trips) require
passenger)	trips)	mph	High	Medium	Low	Yes	Yes	Yes	driver's time.
Carsharing	Limited (needs								Requires convenient and
(vehicle	nearby	20-60		Medium			Limite		affordable vehicle rentals
rentals)	services)	mph	Low	to large	Med.	No	d	Varies	services.
	Wide (nearly	20-60					Limito		Requires motorcycle and
Motorcycle	universal)	mph	Medium	Medium	High	No	d	No	ability. Moderate costs.
	Wide (nearly		Ì	Ì	_				Requires equipment and
Telecommute	universal)	NA	NA	NA	Med.	Yes	Varies	Varies	skill.

This table summarizes the performance of various transportation modes.

Why Not Drive?

Driving is often the fastest mode of travel, and although automobiles are expensive to own (considering fixed costs such as depreciation, insurance, registration fees, scheduled maintenance and residential parking expenses) they are relatively cheap to drive, typically costing just a few cents per mile in operating expenses. Automobile travel also tends to be more comfortable and prestigious than other modes. This explains why 70-90% of trips are made by automobile (depending on definitions and conditions).¹

But for various reasons travelers often need or prefer travel by alternative modes:

- Many people *cannot* drive. In a typical community, 20-40% of the total population, and 10-20% of adolescents and adults, cannot drive due to disability, economic, age constraints, or vehicle failures. Inadequate transport options reduces non-drivers ability to access activities and forces motorists to chauffeur non-drivers (according to the 2009 *National Household Travel Survey*, 5% of total trips were specifically to transport a passenger).²
- Many people *should not* drive for some trips, due to inebriation, disability, or economic constrains. For example, efforts to reduce driving by higher-risk groups (people who are impaired by alcohol or drugs, young males, or people with dementia) can only be successful if there are good alternatives to driving. The high costs of automobile transport places a major financial burden on many lower-income people.
- Travelers sometimes *prefer* using alternative modes, for example, because walking and cycling are more enjoyable and provide healthy exercise, or public transit commuting imposes less stress and allows commuters to read, work or rest.
- Society could benefit from more efficient road, parking, fuel and insurance pricing, or more efficient management of road space, that favor higher value trips and more efficient modes in order to reduce traffic congestion, parking costs, accidents and pollution emissions.

It is therefore interesting to consider what mode share is overall optimal to users and society, and the portion of automobile travel that occurs because travelers lack suitable alternatives. For example, if walking and cycling conditions, and public transit service quality were better, how much more would people rely on these mode, and how much less automobile travel would occur?

In fact, walking, cycling and public transit travel do tend to be much higher, and automobile travel is much lower, in communities with better transport options. For example, Guo and Gandavarapu (2010) estimate that completing the sidewalk network in a typical U.S. town on average increases non-motorized travel 16% (from 0.6 to 0.7 miles per day) and reduces automobile travel 5% (from 22.0 to 20.9 vehicle-miles). Similarly, residents of transit-oriented communities tend to use alternative modes 2-10 times more frequently, and drive 10-30% fewer miles, than residents of automobile-oriented communities (Cervero and Arrington 2008; Litman 2009). Even larger travel reductions occur if improvements in alternative modes are implemented in conjunction with incentives such as more efficient road, parking and insurance pricing.

This indicates latent demand for alternative modes, that is, people would like to rely more on alternative modes but are constrained by poor walking and cycling conditions and inadequate public transit services. This is not to suggest that in an optimal transport system people would forego driving altogether, but it does indicate that given better transport options and more efficient incentives, people would rationally choose to drive less, rely more on alternative modes, and be better off overall as a result.

² <u>http://nhts.ornl.gov/tables09/fatcat/2009/pmt_TRPTRANS_WHYTRP1S.html</u>.

¹ Travel surveys tend to undercount walking and cycling trips, so actual non-motorized mode share is often much higher than indicated by conventional surveys. Walking, cycling and public transit represent a greater mode share in urban areas, and among people who are young, have disabilities, or low incomes.

Todd Alexander Litman © 2006-2021

You are welcome and encouraged to copy, distribute, share and excerpt this document and its ideas, provided the author is given attribution. Please send your corrections, comments and suggestions for improvement.

Such analysis is even more complex because each mode includes various subcategories with unique characteristics. For example, "pedestrians" include people standing, walking alone and in groups, using canes and walkers, jogging and running, playing, walking pets, carrying loads, and pushing hand carts. Their actual needs, abilities, impacts and value to society can vary significantly, as indicated in Table 5.

Mode or Activity	Facility Requirements	Risk to Others	Basic Mobility
	Quality and quantity of pedestrian facilities	Danger these users impose on others	Whether the mode provides basic mobility benefits)
People standing	Minimal	None	NA
People sitting at benches or	Seats or benches	None	NA
	N Aireirea e l	1.000	Llink
Individual walkers	winimai	LOW	High
Walkers in groups	Medium	Low	High
Walkers with children	Medium	Low	High
Children playing	Medium to large	Medium	Medium
Walkers with pets	Medium to large	Low	Medium
Human powered wheelchairs	Medium	Low	Very High
Motor powered wheelchairs	Medium to large	Medium to high	Very High
Joggers and runners	Medium to large	Medium	Medium
Skates and push-scooters	Large	Medium	Low
Powered scooters and Segways	Large	Medium	Low to high
Human powered bicycle	Medium to large	Medium to high	Medium
Motorized bicycle	Large	High	Low
People with handcarts or wagons	Medium to large	Low to medium	Medium
Vendors with carts and wagons	Medium to large	Low	Sometime (if the goods sold
			are considered 'basic').

Table 5 Nonmotorized Facility Uses Compared

This table compares various nonmotorized facility users.

Similarly, *public transit* (also called *public transportation* or *mass transit*) includes various types of services and vehicles. Table 6 summarizes the performance of various types of public transit. Actual performance depends on specific circumstances; for example costs per trip can vary depending on which costs are included (for example, whether major new road or rail improvements are required, whether Park-and-Ride facilities are included in transit budgets, construction and operating costs, load factors and types of trips.

Name	Description	Availability	Speed	Density	Costs
		Destinations served	Passenger travel speeds	Passenger volumes	Cost per trip
Heavy rail	Relatively large, higher-speed trains, operating entirely on separate rights- of-way, with infrequent stops, providing service between communities.	Limited to major corridors in large cities	High	Very high	Very high
Light Rail Transit (LRT)	Moderate size, medium-speed trains, operating mainly on separate rights-of- way, with variable distances between stations, providing service between urban neighborhoods and commercial centers.	Limited to major corridors	Medium	High	High
Streetcars (also called trams or trolleys)	Relatively small, lower-speed trains, operating primarily on urban streets, with frequent stops which provide service along major urban corridors.	Limited to major corridors	Medium	High	High
Fixed route bus transit	Buses on scheduled routes.	Widely available in urban areas	Low to medium	High	Low to medium
Bus Rapid Transit (BRT)	A bus system with features that provide a high quality of service.	Limited to major corridors	Medium to high	High	Low to medium
Express bus	Limited stop bus service designed for commuters and special events.	Limited to major corridors	High	High	Low to medium
Ferry services	Boats used to transport people and vehicles.	Limited to major corridors	Low to medium	Low to medium	Medium to high
Paratransit	Small buses or vans that provide door- to-door, demand-response service.	Widely available	Low	Low	High
Personal Rapid Transit (PRT)	Small, automated vehicles that provide transit service, generally on tracks.	Limited to major corridors	Low to medium	Low to medium	Medium to high
Vanpool	Vans used for ridesharing.	Widely available	Medium to high	High	Low
Shared taxi.	Private taxis that carry multiple customers.	Limited to busy corridors	Medium to high	Low to medium	Medium to high
Тахі	Conventional taxi service.	Widely available	Medium to high	Low	High

Table 6 Transit Modes Compared

This table summarizes different types of public transit and their performance attributes.

Multi-modal transport planning requires tools for evaluating the quality of each mode, such as Level-of-Service standards which can be used to indicate problems and ways to improve each mode. Tables 7 and 8 indicate factors that can be considered when evaluating different modes.

Multi-Modal Transportation Planning Victoria Transport Policy Institute

Table 7 No	onmotorized Level-Of-Se	rvice Rating Factors
Feature	Definition	Indicators
		 Portion of streets with nonmotorized facilities.
	Whether sidewalks and	 Length of path per capita.
	paths exist, and connect	 Network connectivity and density (kilometers of
Network continuity	throughout an area.	sidewalks and paths per square kilometer).
		 Sidewalk and path functional width.
	Whether sidewalks and	 Portion of sidewalks and paths that meet current
	paths are properly designed	design standards.
Network quality	and maintained.	 Portion of sidewalks and paths in good repair.
		 Road crossing widths.
		 Motor vehicle traffic volumes and speeds.
		 Average pedestrian crossing time.
	Safety and speed of road	 Quantity and quality of crosswalks, signals and crossing
Road crossing	crossings	guards.
	Separation of nonmotorized	 Distance between traffic lanes and sidewalks or paths.
	traffic from motorized	 Presence of physical separators, such as trees and
	traffic, particularly high	bollards.
Traffic protection	traffic volumes and speeds.	Speed control.
		Functional width of sidewalk and paths.
		Peak-period density (people per square meter)
		Clearance from hazards, such as street furniture and
	Whether sidewalks and	performers within the right-of-way.
Congestion and	paths are crowded or	Number of reported conflicts among users.
	experience other conflicts.	Facility management to minimize user conflicts.
Topography	Presence of steep inclines.	Portion of sidewalks and paths with steep inclines.
Sance of Security	Perceived accident, crime or	Reported security incidents.
Sense of Security		Quality of visibility and nuclity of signs, many and visitor
Wayfinding	Station area navigation aids	Availability and quality of signs, maps and visitor information services
Weather	User protected from sup	
protection	and rain	Presence of shade trees and awnings
		Litter narticularly notentially dangerous objects
	Cleanliness of facilities and	 Graffiti on facilities and nearby areas
Cleanliness	nearby areas	 Effectiveness of sidewalk and nath cleaning programs
		Ouality of facility design
		Quality of nearby buildings and landscaning
		Area Livability (environmental and social quality of an
		area).
		Community cohesion (quantity and quality of positive
	The attractiveness of the	interactions among people in an area).
	facility, nearby areas and	Number of parks and recreational areas accessible by
Attractiveness	destinations.	nonmotorized facilities.
		Quality of nonmotorized education and promotion
	Effectiveness of efforts to	programs.
	encourage nonmotorized	Nonmotorized transport included in Commute Trip
Marketing	transportation.	Reduction programs.

This table summarizes factors to consider when evaluating walking and cycling conditions.

Multi-Modal Transportation Planning Victoria Transport Policy Institute

Table 8	Transit Level-of-S	ervice Rating Factors
Feature	Description	Indicators
Availability	Where and when transit service is	 Geographic coverage (Portion of destinations within 500 meters of transit) Annual service-kilometers per capita. Daily hours of service. Hours of service
Frequency	Frequency of service and average wait time.	 Operating frequency. Headways (time between trips). Average waiting times.
Travel Speed	Transit travel speed.	 Average vehicle speeds. Transit travel speed relative to driving the same trip. Door-to-door travel time.
Reliability	How well service actually follows published schedules.	 On-time operation. Portion of transfer connections made. Mechanical failure frequency.
Boarding speed	Vehicle loading and unloading speed.	 Dwell time.Boarding and alighting speeds.
Safety and security	Perceived user safety and security.	 Perceived passenger security. Accidents and injuries rates. Reported security incidents. Visibility and lighting. Absence of vandalism.
Price and affordability	Fare prices, structure, payment options, ease of purchase.	 Fares relative to average incomes. Fares relative to other travel mode costs. Payment options (cash, credit cards, etc.). Ticket availability (stations, stores, Internet, etc.).
Integration	Ease of transferring between transit and other modes.	 Quality of connections between transit routes. Quality of connections between transit and other modes (train stations, airports, ferry terminals, etc.).
		 Seating availability and quality. Space (lack of crowding). Quiet (lack of excessive noise). Air quality (lack of unpleasant smells) and temperature. Cleanliness.
Comfort	Passenger comfort	Washrooms and refreshments (for longer trips).
Accessibility	Ease of reaching stations and stops.	 Distance from transit stations and stops to destinations. Walkability (quality of walking conditions) in areas serviced by transit.
Baggage capacity	Accommodation of baggage.	 Ability, ease and cost of carrying baggage, including special items such as pets.
Universal design	Accommodation of diverse users & needs.	 Accessible design for transit vehicles, stations and nearby areas. Ability to carry baggage.
User information	Ease of obtaining user information.	 Availability and accuracy of route, schedule and fare information. Real-time transit vehicle arrival information. Availability of Information for people with special needs (disabilities, limited language and reading ability, etc.).
Courtesy and responsiveness	Courtesy with which passengers are treated.	 How passengers are treated by transit staff. Ease of filing complaints. Speed and responsiveness with which complaints are treated.
Attractiveness	The attractiveness of transit facilities.	Attractiveness of vehicles and facilities. Attractiveness of documents and websites.
Marketing	Effectiveness of efforts to encourage public transport.	 Popularity of promotion programs. Effectiveness at raising the social status of transit travel. Increases in public transit ridership in response to marketing efforts.

This table summarizes factors that can be considered when evaluating public transit services.

Automobile Dependency and Multi-Modalism

Automobile dependency refers to transportation and land use patterns that favor automobile travel and provide relatively inferior alternatives. Its opposite, *multi-modalism*, refers to a transport system that offers users diverse transport options that are effectively integrated, in order to provide a high degree of accessibility even for non-drivers. Table 9 compares automobile dependency and multi-modal transport systems.

TUDIC V AU	to Bopollaolloy and malti modal int	anoportation compared
Factor	Automobile Dependency	Multi-modal Transportation
Motor vehicle		Medium per capita motor vehicle
ownership	High per capita motor vehicle ownership.	ownership.
Vehicle travel	High per capita motor vehicle mileage.	Medium to low vehicle mileage.
Land use density	Low. Common destinations are dispersed.	Medium. Destinations are clustered
Land use mix	Single-use development patterns.	More mixed-use development.
Land for transport	Large amounts of land devoted to roads	Medium amounts devoted to roads
	and parking.	and parking.
Road design	Emphasizes automobile traffic.	Supports multiple modes and users.
Street scale	Large scale streets and blocks.	Small to medium streets and blocks.
Traffic speeds	Maximum traffic speeds.	Lower traffic speeds.
Walking	Mainly in private malls.	Mainly on public streets.
Signage	Large scale, for high speed traffic.	Medium scale, for lower-speed
		traffic.
Parking	Generous supply, free.	Moderate supply, some pricing.
Site design	Parking paramount, in front of buildings.	Parking sometimes behind buildings.
Planning Practices	Non-drivers are a small minority with little	Planning places are high value on
	political influence.	modal diversity.
Social expectations	Non-drivers are stigmatized and their	Non-drivers are not stigmatized and
	needs given little consideration.	their needs are considered.

Table 9Auto Dependency and Multi-Modal Transportation Compared

This table compares automobile dependency and multi-modal transport systems.

Automobile dependency is a matter of degree. Few places are totally automobile dependent (that is, driving is the *only* form of transport). Many relatively automobile dependent areas often have significant amounts of walking, cycling, and transit travel among certain groups or situations. Even 'car free' areas usually have some automobile travel by emergency, delivery and service vehicles.

Automobile dependency has many impacts. It increases total mobility (per capita travel), vehicle traffic, and associated costs. It makes non-drivers economically and socially disadvantaged, since they have higher financial and time costs or less ability to access activities. This tends to reduce opportunities, for example, for education, employment and recreation. In an automobile dependent community virtually every adult is expected to have a personal automobile (as opposed to a *household* automobile shared by multiple drivers), non-drivers require frequent chauffeuring, and it is difficult to withdraw driving privileges from unfit people since alternatives are inferior. Automobile dependency reduces the range of solutions that can be used to address problems such as traffic congestion, road and parking facility costs, crashes, and pollution.

Summary of Factors Affecting Accessibility

The table below lists factors that affect accessibility and the degree to which they are considered in current transport planning. Multi-modal transportation planning requires consideration of all of these factors.

Name	Description	Current Consideration
Transport Demand	The amount of mobility and access that people and businesses would choose under various conditions (times, prices, levels of service, etc).	Motorized travel demand is well studied, but nonmotorized demand is not. Travel demand is often considered exogenous rather than affected by planning decisions.
Mobility	The distance and speed of travel, including <i>personal mobility</i> (measured as person-miles) and <i>vehicle mobility</i> (measured as vehicle-miles).	Conventional transport planning primarily evaluates mobility, particularly vehicle mobility.
Transportation Options	The quantity and quality of access options, including walking, cycling, ridesharing, transit, taxi, delivery services, and telecommunications. Qualitative factors include availability, speed, frequency, convenience, comfort, safety, price and prestige.	Motor vehicle options and quality are usually considered, using indicators such as roadway level-of-service, but other modes lack such indicators and some important service quality factors are often overlooked.
User information	The quality (convenience and reliability) of information available to users on their mobility and accessibility options.	Frequently considered when dealing with a particular mode or location, but often not comprehensive.
Integration	The degree of integration among transport system links and modes, including terminals and parking facilities.	Automobile transport is generally well integrated, but connections between other modes are often poorly evaluated.
Affordability	The cost to users of transport and location options relative to incomes.	Automobile operating costs and transit fares are usually considered.
Mobility Substitutes	The quality of telecommunications and delivery services that substitute for physical travel.	Not usually considered in transport planning.
Land Use Factors	Degree that factors such as land use density and mix affect accessibility.	Considered in land use planning, but less in transport planning.
Transport Network Connectivity	The density of connections between roads and paths, and therefore the directness by which people can travel between destinations.	Conventional planning seldom considers the effects of roadway connectivity on accessibility.
Roadway Design and Management	How road design and management practices affect vehicle traffic, mobility and accessibility.	Some factors are generally considered, but others are not.
Prioritization	Various strategies that increase transport system efficiency.	Often overlooked or undervalued in conventional planning.
Inaccessibility	The value of inaccessibility and external costs of increased mobility.	Not generally considered in transport planning.

Table 10	Summary of Factors A	Affecting Accessibility	y (Litman 2006)

This table indicates factors that affect accessibility and whether they are currently considered in planning.

Transportation for Everyone Ratings

As previously discussed, a transportation system must be diverse in order to serve diverse travel demands. No single travel option is sufficient; walking, bicycling, public transit and automobiles all play important roles in an efficient and equitable transport system. Since land use factors affect accessibility, multimodal planning must also consider development density and mix.

Table 11 summarizes the *Transportation for Everyone* rating system, which evaluates multimodalism in an area, and helps identify potential gaps and improvement options.

Table 11	Transportation for	or Everyone	Rating (I	_itman 2017)
			U (

Accessibility Factors	Rating (1-10)
1. All-weather (paved) roads, and reliable motor vehicle fuel supplies.	
2. Compact, mixed urban development, which creates <i>Transit-Oriented Development</i> (if located around major transit stations) or <i>Urban Villages</i> (if pedestrian oriented), where most common services (shops, restaurants, schools, parks, transit stops, etc.) can be reached within a 5-10 minute walk or bicycle ride of most homes and worksites.	
3. Good walking and cycling conditions, including adequate sidewalks, crosswalks, paths, bike lanes, bike parking, and vehicle traffic speed control.	
4. High quality public transit services, with good coverage, frequency, comfort, safety and affordability for both local and interregional (between city) services.	
5. Good connectivity, including dense walking and road networks, and intermodal connections such as walking and cycling access, and taxi services at transit stations.	
6. Convenient and affordable carsharing and bikesharing, taxi and ride-hailing services (e.g., Uber and Lyft).	
7. Universal design (transportation systems and services accommodate people with diverse needs and abilities, including those with disabilities and heavy loads).	
8. Good telework options, such as on-line shopping, banking and municipal services, and efficient delivery services ((mail, courier and local shops).	
9. Convenient user information concerning transportation options.	
10. Social marketing that promotes non-automobile modes and enhances their status.	

Each factor can be rated from 0 (worst) to 10 (best).

This rating system recognizes the integrated nature of multimodalism. For example, most public transit trips including walking links, so walkability affects public transit service quality, and since land use factors such as density and mix affect the destinations that pedestrians can reach, these also affect public transit accessibility. As a result, walkability improvements and Smart Growth land use policies are often an important way to improve public transit service quality and increase transit ridership, and pedestrian and public transit improvements can have synergistic effects; implemented together their impacts are larger than the sum of their individual impacts.

Examples and Case Studies

The report, *Integrating Australia's Transport Systems: A Strategy For An Efficient Transport Future* (Booz Allen 2012) describes cities with integrated transport planning:

London

London's overall public transport network is characterised by a well-established rail network complemented by an extensive bus network and a ferry network. These networks are integrated by multi-modal stations designed for ease of interchange for high volumes of passengers. At major stations, purpose built bus interchanges have been developed to be within walking distance of the railway and underground stations, often manned by bus station staff and furbished with real time information systems (e.g. Countdown – which shows the number of minutes until the next bus is due to arrive).

Hong Kong

Hong Kong public transport services include railways, trams, buses, minibuses, taxis and ferries. This results in very high public transit mode share (90%) and very low vehicle ownership rates (50 vehicles per 1000 population). Hong Kong transport services are provided by several operators.

Singapore

Singapore is considered an international leader in integrated multi-modal transport planning. It established the world's first area licensing and electronic road pricing systems, and uses a quota system to limit vehicle ownership. The government makes continued investments in transport infrastructure.

Typo	London	Hong Kong	Singanoro
туре	London	Hong Kong	Singapore
	Extensive network of modes		
	(walking, cycling, taxi, bus,	Well-designed intermodal	
	rail, ferry and airports) with	stations integrated into	Transit stations are designed to
	well-designed stations and	neighborhoods.	integrate multiple modes and
Physical	terminals		local development
	Oyster card introduced in	Octopus Card introduced in	EZ Card usable on all public
	2003, can be used for most	1997 useable on most	transport modes, parking, and
Fare	urban transport services.	transport services.	small retail purchases.
			TransitLink Guide and extensive
			signage provide comprehensive
	London has led the way in		information on all aspects of
Information	public transport signage.	Good signage	travelling.
			TransLink multi-modal agency
	The City of London manages	Single governing authority	established in 1989. Provides
	all aspects of transport	helps to implement	strategic planning and
Institutional	planning and operations.	integration	integrated services.

Table 12Examples of Integrated Transport Services (Booz Allen 2012)

Leading cities are developing integrated, multi-modal transport systems.

Best Practices

The following are recommendations for multi-modal transportation planning:

- Multi-modal transportation planning should have integrated institutions, networks, stations, user information, and fare payment systems.
- Consider a variety of transportation improvement options, including improvements to various modes, and mobility management strategies such as pricing reforms and smart growth land use policies. Consider various combinations of these options, such as public transport improvements plus supportive mobility management strategies.
- Consider all significant impacts, including long-term, indirect and non-market impacts such as equity and land use changes. This should at least include:
 - Congestion
 - Roadway costs
 - Parking costs
 - Consumer costs
 - Traffic accidents
 - Quality of access for non-drivers
- Energy consumption
- Pollution emissions
- Equity impacts
- Physical fitness and health
- Land use development impacts
- Community livability
- Impacts that cannot be quantified and monetized (measured in monetary values) should be described.
- Multi-modal comparisons should be comprehensive and marginal, and should account for factors such as transit system economies of scale and scope.
- Special consideration should be given to transport system connectivity, particularly connections between modes, such as the quality of pedestrian and cycling access to transit stops and stations.
- Special consideration should be given to the quality of mobility options available to people who are physically or economically disadvantaged, taking into account universal design (the ability of transport systems to accommodate people with special needs such as wheelchair users and people with wheeled luggage) and affordability.
- Indicate impacts with regard to strategic objectives, such as long-range land use and economic development.
- Use comprehensive transportation models that consider multiple modes, generated traffic impacts (the additional vehicle traffic caused by expansion of congested roadways), and the effects of various mobility management strategies such as price changes, public transit service quality improvements and land use changes.
- People involved in transportation decision-making (public officials, planning professionals and community members) should live without using a personal automobile for at least two typical weeks each year that involve normal travel activities (commuting, shopping, social events, etc.) in order to experience the non-automobile transportation system.

References and Information Resources

Booz Allen (2012), Integrating Australia's Transport Systems: A Strategy For An Efficient Transport Future, Infrastructure Partnership Australia (<u>www.infrastructure.org.au</u>); at <u>www.infrastructure.org.au/DisplayFile.aspx?FileID=812</u>.

Ralph Buehler and Andrea Hamre (2016), "An Examination of Recent Trends in Multimodal Travel Behavior Among American Motorists," *International Journal of Sustainable Transportation*, Vo. 10, No. 4, pp. 354–364 (<u>http://dx.doi.org/10.1080/15568318.2014.945672</u>).

CALTRANS (2008), *Planning Frequently Asked Questions*, California Department of Transportation (<u>www.dot.ca.gov/hq/tpp/index.html</u>); at <u>www.dot.ca.gov/hq/tpp/faqs.html</u>.

CALTRANS (2002), *Guide For Preparation of Traffic Impact Studies*, California DOT (<u>www.dot.ca.gov</u>); at <u>www.dot.ca.gov/hq/traffops/developserv/operationalsystems/reports/tisguide.pdf</u>.

Cambridge Systematics (2009), *Performance Measurement Framework for Highway Capacity Decision Making*, Report S2-C02-RR, Strategic Highway Research Program, TRB (<u>www.trb.org</u>); at <u>http://onlinepubs.trb.org/onlinepubs/shrp2/shrp2_S2-C02-RR.pdf</u>.

Robert Cervero and G. B. Arrington (2008), "Vehicle Trip Reduction Impacts of Transit-Oriented Housing," *Journal of Public Transportation*, Vol. 11/3, pp. 1-17; at www.nctr.usf.edu/jpt/pdf/JPT11-3.pdf.

Susan Chapman and Doug Weir (2008), *Accessibility Planning Methods*, Research Report 363, New Zealand Transportation Agency (<u>www.landtransport.govt.nz/research/reports/363.pdf</u>).

Chris Comeau (2010), *Moving Beyond the Automobile: Multi-modal Transportation Planning in Bellingham, Washington*, American Planning Association (<u>www.planning.org</u>); at <u>www.cob.org/documents/pw/transportation/practicing-planner-case-study.pdf</u>.

DfT (2009), NATA (New Approach for Transport Appraisal) Refresh: Appraisal for a Sustainable Transport System, UK Department for Transport (<u>www.dft.gov.uk</u>); at <u>www.dft.gov.uk/pgr/economics/integratedtransporteconomics3026</u>.

Frederick C. Dock, Ellen Greenberg and Mark Yamarone (2012), "Multimodal and Complete Streets Performance Measures in Pasadena, California," *ITE Journal* (<u>www.ite.org</u>), Vol. 82/1, pp. 33-37; at <u>www.ite.org/membersonly/itejournal/pdf/2012/JB12AA33.pdf</u>.

Richard Dowling, et al. (2008), *Multimodal Level Of Service Analysis For Urban Streets*, NCHRP Report 616, TRB (<u>www.trb.org</u>); at <u>http://trb.org/news/blurb_detail.asp?id=9470</u>.

ECONorthwest and PBQD (1995), *Least-Cost Planning: Principles, Applications and Issues*, FHWA (<u>www.fhwa.dot.gov/environment</u>); at <u>www.vtpi.org/LCPpaper.pdf</u>.

EMBARQ (2012), Evaluate, Enable, Engage: Principles to Support Effective Decision Making in Mass Transit Investment Programs, EMBARQ (<u>www.embarq.org</u>); at <u>https://bit.ly/2Z6A7Dd</u>.

Multi-Modal Transportation Planning Victoria Transport Policy Institute

FDOT (2002), *Quality/Level of Service Handbook*, Florida Department of Transportation (www.dot.state.fl.us); at www.dot.state.fl.us/planning/systems/sm/los.

FHWA and FTA (2007), *The Transportation Planning Process Key Issues: A Briefing Book for Transportation Decisionmakers, Officials, and Staff*, FHWA-HEP-07-039, FHWA and FTA (www.planning.dot.gov); at www.planning.dot.gov/documents/briefingbook/bbook.htm.

Martin Guttenplan and Seleta Reynolds (2012), "Measuring Multimodal Mobility with the *Highway Capacity Manual 2010* and other New Analysis Tools," *TR News 280*, Transportation Research Board (<u>www.trb.org</u>); at <u>https://bit.ly/37YicCC</u>.

Jessica Y. Guo and Sasanka Gandavarapu (2010), "An Economic Evaluation Of Health-Promotive Built Environment Changes," *Preventive Medicine*, Vol. 50, Supplement 1, January, pp. S44-S49; at <u>www.activelivingresearch.org/resourcesearch/journalspecialissues</u>.

Chris A. Hale (2011), "New Approaches To Strategic Urban Transport Assessment," Australian Planner, Vol. 48/3, 173-182; abstract at <u>http://dx.doi.org/10.1080/07293682.2011.592505</u>.

Susan Handy (2020), *What California Gains from Reducing Car Dependence*, National Center for Sustainable Transportation (<u>https://ncst.ucdavis.edu</u>); at <u>https://bit.ly/2Z8NvGO</u>.

Todd Litman (2001), "Generated Traffic; Implications for Transport Planning," *ITE Journal*, Vol. 71, No. 4, (<u>www.ite.org</u>), April, pp. 38-47; at <u>www.vtpi.org/gentraf.pdf</u>.

Todd Litman (2006), *Evaluating Accessibility for Transportation Planning*, Victoria Transport Policy Institute (<u>www.vtpi.org</u>); at <u>www.vtpi.org/access.pdf</u>.

Todd Litman (2007), *Guide to Calculating Mobility Management Benefits*, Victoria Transport Policy Institute (<u>www.vtpi.org</u>); at <u>www.vtpi.org/tdmben.pdf</u>.

Todd Litman (2008), *Comprehensive Transport Planning: Best Practices For Evaluating All Options And Impacts*, VTPI (<u>www.vtpi.org</u>); at <u>www.vtpi.org/comprehensive.pdf</u>.

Todd Litman (2009), Land Use Impacts on Transportation: How Land Use Factors Affect Travel Behavior, VTPI (www.vtpi.org); at www.vtpi.org/landtravel.pdf.

Todd Litman (2012), *Toward More Comprehensive and Multi-modal Transport Evaluation*, VTPI (<u>www.vtpi.org</u>); at <u>www.vtpi.org/comp_evaluation.pdf</u>.

Jeremy Mattson (2020), *Measuring the Economic Benefits of Rural and Small Urban Transit Services in Greater Minnesota*, Upper Great Plains Transportation Institute North Dakota State University; at <u>www.dot.state.mn.us/research/reports/2020/202010.pdf</u>.

J.S. Miller (2006), *Multimodal Statewide Transportation Planning: A Survey of State Practices*, VTRC 06-R13, Virginia DOT (<u>www.virginiadot.org</u>); at <u>https://bit.ly/2NpoeCP</u>.

MWCG (2006), *Transportation Models & Forecasts*, Metropolitan Washington Council of Governments (<u>www.mwcog.org/transportation/activities/models</u>).

Measuring Walking (<u>www.measuring-walking.org</u>) describes internationally standardised monitoring methods of walking and public space.

NYDOT (2009), *New York City Street Design Manual*, New York Department of Transportation (www.nyc.gov/html/dot) at www.nyc.gov/html/dot/html/about/streetdesignmanual.shtml.

PennDOT (2007), *The Transportation and Land Use Toolkit*, PUB 616 (3-07), Pennsylvania Dept. of Transportation; at (<u>ftp://ftp.dot.state.pa.us/public/PubsForms/Publications/PUB%20616.pdf</u>).

PSRC (2008), *Transportation 2040* (long-range transport plan) and *Transportation Improvement Program*, Puget Sound Regional Council (<u>http://psrc.org/projects/tip/index.htm</u>).

Marc Schlossberg, Asha Weinstein Agrawal, Katja Irvin and Vanessa Louise Bekkouche (2008), "How Far, By Which Route, and Why? Spatial Analysis of Pedestrian Preference," Mineta Transportation Institute (<u>www.transweb.sjsu.edu</u>); at http://transweb.sjsu.edu/mtiportal/research/publications/documents/06-06/MTI-06-06.pdf.

Sam Swartz (2012), *Steps to a Walkable Community: A Guide for Citizens, Planners, and Engineers*, America Walks (<u>www.americawalks.org/walksteps</u>).

Brad Strader (2012), "Performance Metrics for Plans, Projects, and Planners," *ITE Journal* (<u>www.ite.org</u>), Vol. 82/1, pp. 31-32.

Transportation for Communities - Advancing Projects through Partnerships (<u>www.transportationforcommunities.com</u>) is an integrated website that provides guidance for transport planning and investment decisions, particularly within the U.S. transportation development system.

TRB (2010), *Highway Capacity Manual*, Transportation Research Board (<u>www.trb.org</u>); at <u>http://sjnavarro.files.wordpress.com/2008/08/highway_capacital_manual.pdf</u>.

Kristine M. Williams, Tia Claridge and Alexandria Carroll (2016), *Multimodal Transportation Planning Curriculum for Urban Planning Programs*, Transportation Research and Education Center (TREC); at

http://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=1113&context=trec_reports.

WSDOT (2006), *Washington State Transportation Plan*, Washington State Department of Transportation (<u>www.wsdot.wa.gov/planning/wtp</u>).

Rhonda Young, Jennifer Barnes, G. Scott Rutherford (2002), *Multimodal Investment Choice Analysis; Volume I: Phase I*, Washington State Transportation Center (TRAC); funded by the U.S. Federal Highway Administration.

www.vtpi.org/multimodal_planning.pdf